skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Yafei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract After the preparation of 2D electronic flat band (EFB) in van der Waals (vdW) superlattices, recent measurements suggest the existence of 1D electronic flat bands (1D‐EFBs) in twisted vdW bilayers. However, the realization of 1D‐EFBs is experimentally elusive in untwisted 2D layers, which is desired considering their fabrication and scalability. Herein, the discovery of 1D‐EFBs is reported in an untwisted in situ‐grown two atomic‐layer Bi(110) superlattice self‐aligned on an SnSe(001) substrate using scanning probe microscopy measurements and density functional theory calculations. While the Bi–Bi dimers of Bi zigzag (ZZ) chains are buckled, the epitaxial lattice mismatch between the Bi and SnSe layers induces two 1D buckling reversal regions (BRRs) extending along theZZdirection in each Bi(110)‐11 × 11 supercell. A series of 1D‐EFBs arises spatially following BRRs that isolate electronic states along the armchair (AC) direction and localize electrons in 1D extended states alongZZdue to quantum interference at a topological node. This work provides a generalized strategy for engineering 1D‐EFBs in utilizing lattice mismatch between untwisted rectangular vdW layers. 
    more » « less
  2. null (Ed.)
  3. The prediction of new materials with peculiar topological properties is always desirable to achieve new properties and applications. In this work, by means of density functional theory computations, we extend the rule-breaking chemical bonding of planar pentacoordinate silicon (ppSi) into a periodic system: a C 2v Ca 4 Si 2 2− molecular building block containing a ppSi center is identified first, followed by the construction of an infinite CaSi monolayer, which is essentially a two-dimensional (2D) network of the Ca 4 Si 2 motif. The moderate cohesive energy, absence of imaginary phonon modes, and good resistance to high temperature indicate that the CaSi monolayer is a thermodynamically and kinetically stable structure. In particular, a global minimum search reveals that the ppSi-containing CaSi monolayer is the lowest-energy structure in 2D space, indicating its great promise for experimental realization. The CaSi monolayer is a natural semiconductor with an indirect band gap of 0.5 eV, and it has rather strong optical absorption in the visible region of the solar spectrum. More interestingly, the unique atomic configuration endows the CaSi monolayer with an unusually negative Poisson's ratio. The rule-breaking geometric structure together with its exceptional properties makes the CaSi monolayer quite a promising candidate for applications in electronics, optoelectronics, and mechanics. 
    more » « less